

Lake Management at Amston Lake

Aquatic Ecosystem Research LLC Larry Marsicano, Mark June-Wells, & William Henley June 26, 2021

Lake Management at Amston Lake

- Collaboration between ALTD and AER
- 2019, 2020, 2021
- Lake Water Quality Monitoring
- Stormwater Quality Monitoring
- Aquatic Plant Mapping
- Bathymetric Mapping

Water Quality

- Lake Health Committee collect field data and water samples
- Water samples analyzed by Phoenix Environmental Laboratories
- Field data and laboratory results conveyed to AER

Samples to be tested for: Check parameters Total Phosphorus, Total Kjeldahi Nitrogen, Biltrate, Biltrite, Chloride, Bodium, Potassium, BCalcium, Sindaresium, Dammonia, Balkalinity, BBoron Schlorophyli-A VER tests Palgal Analyses D10µm net 25mL vial 3 drops Lugols solution D 500mL Amber bottle 5 mL Lugols solution Surface 0.5 14,7 10,1 97,7 1 14,7 10,1 97,7 X 11,00 2 14,3 10,0 98,9 3 11,00 3 14,5 10,0 98,9 3 11,00 4 14,5 12,0 97,5 X 11,00 5 14,4 9,9 97,5 X 11,00 6 1,9,9 97,5 X 11,00 10,0 7 10,0 98,9 11,00 10,0 10,0 10,0 6 1,1,5 1,8 70,7 X 11,00 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0	Care Nam	e:Amston	Station	: H1 Deep water site I	AT 41.6284	82 LONG=72.328	105 Date: 101	10/20
Total Kjeldahi Nitrogen, BNitrate, BNitrat	samples t	o be tested	for: Check param	ieters				
Shlarge sim. DAmmonia, DAlkalinity, DBoron Schlorophyli-A NER tests Dalgal Analyses P10µm net 25mL vial 3 drops Lugols solution Solution Solution Solution Depth Competitive at depth Dissolved Oxygen (mg/l) Dissolved Oxygen Sample taken (1) Surface 0.5 14.1 10.1 97.7 X 11.00 2 14.1 10.0 98.9 4.1 3 14.5 10.0 98.9 4.1 3 14.5 10.0 97.6 X 11.00 Depth Temperature pH Conductivity Total Salinity (ppt) Resistivity 0 Depth Temperature pH Conductivity Total Salinity (ppt) Resistivity 0 Conductivity Total	Total Ph	osphorus,	Total Kjeldahl Ni	trogen, 🖯 Nitrate, 🗗	litrite, DCh	loride, 🔤 sodium	BPotassium, BC	Calcium,
VER tests Dalgal Analyses D 10µm net 25mL vial 3 drops Lugols solution D 500mL Amber bottle 5 mL Lugols solution Openth Temperature at depth (°C) Dissolved Oxygen (mg/l) Dissolved Oxygen (°K) Sample taken (1) Surface 0.5 14.7 IO.1 97.7 1 14.7 IO.0 Surface 0.5 14.7 IO.0 97.7 3 IA.5 IO.0 97.6 X III.00 97.6 A III.00 97.6 X III.00 Surface 0.5 IA.4 9.7 X III.0 Soluted Similar (ppt) Resistivity Openth Temperature pH Conductivity Total Salinity (ppt) Resistivity Openth Temperature pH Conductivity Total Salinity (ppt) Resistivity (IO.0 <	Hagnes	ium, 🗗 Amr	nonia, 🖽 Alkalinity	y, □Boron				
Depth (Meters)Temperature at depth (°C)Dissolved Oxygen (mg/l)Dissolved Oxygen (%)Sample taken (1) (1 m, thermocline, *0.5m from Bottom)Surface 0.514,710,197,7*0.5m from Bottom)114,710,197,7**10,00214,610,098,9**314,510,098,9**314,510,098,9**414,59,896,7**514,49,997,5X*614,49,997,5X*7*****Meters)Sample (*F)pHConductivity (ms/cm) (ms/cm)Total Dissolved Solids (TDS)(ppm)Resistivity (G cm) (G cm)surface****1****2****3****4****1*** <td>AER tests</td> <td>Algal Ana</td> <td>lyses ⊡*10µm ne</td> <td>t 25mL vial 3 drops Lu</td> <td>gols solutio</td> <td>n 🖻 500mL Amb</td> <td>er bottle 5 mL Lug</td> <td>ols solutior</td>	AER tests	Algal Ana	lyses ⊡*10µm ne	t 25mL vial 3 drops Lu	gols solutio	n 🖻 500mL Amb	er bottle 5 mL Lug	ols solutior
Surface 0.5 14.7 10.1 99.7 1 14.7 10.1 99.7 2 14.6 10.0 98.9 3 14.5 10.0 98.9 3 14.5 10.0 98.9 3 14.5 10.0 98.9 4 14.5 9.6 96.7 5 14.4 9.9 97.5 X. 11.0 6 14.4 9.9 97.5 X. 11.0 7 10.0 98.9 97.5 X. 11.0 7 19.9 97.5 X. 11.05 97.5 97.5 X. 11.05 97.5 X. 11.05 97.5 97.7 10.05 10.05 10.05 10.05	Depti (Meter	n Temp s)	erature at depth (°C)	Dissolved Oxygen (r	ng/l) Di	ssolved Oxygen (%)	Sample taken (1 m, thermoc ~0.5m from Bot	(1) line, ttom)
1 (4.7) 10.1 97.5 X 11.00 2 (4.6) 10.0 98.7 X 11.00 3 14.5 10.0 98.7 10.0 4 14.5 9.8 96.7 5 14.4 9.7 97.5 X 111.00 6 14.4 9.7 97.5 X 111.15 7 14.4 9.7 97.5 X 111.15 6 14.4 9.7 97.5 X 111.15 7 11.15 97.5 X 111.15 10.00 Meters) Sample (1F) 10.15 10.15 10.15 10.15 10.15 surface 11.15 10.15	Surface	0.5	14.7	10,1		99.7		
2 $[4,5]$ $10,0$ $78,9$ 3 $14,5$ $10,0$ $98,0$ 4 $14,5$ $9,6$ $76,7$ 5 $14,4$ $9,9$ $97,5$ X NY: (5 6 $13,4$ $9,9$ $97,5$ X NY: (5 7 7 7 X NY: (5 $97,5$ X NY: (5 7 7 X NY: (5 $97,5$ X NY: (5 $97,5$ X NY: (5 7 X NY: (5 $97,5$ X NY: (5 $97,5$ X NY: (5 7 X NY: (5 $97,5$ X NY: (5 $97,5$ X NY: (5 7 X NY: (5 $97,5$ X NY: (5 $97,5$ X NY: (5 Y Neters) Sample (ms/cmineter) Dissolved Solids (g/kg) $97,6$ $(9,7,8)$ $(9,7,8)$ Surface 1	1		14.7	10.1		99.5	X 11.0	O
4 14.5 76.0 76.0 5 14.4 9.9 97.6 97.6 6 13.4 9.9 97.6 97.5 \times N* (5) 6 13.4 9.9 97.5 \times N* (5) 7 1.4 9.9 97.5 \times N* (5) 7 1.4 9.9 97.5 \times N* (5) 7 1.5 1.5 1.5 1.5 1.5 (rF) (r) (millistemen/centimeter) Dissolved Solids (TDS)(ppm) Resistivity ($\Omega \ cm$) surface 1.5 1.5 1.5 1.5 1.5 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 2.3 3.5 1.5 1.5 1.5 1.5 1.5 4.5 5.5 1.5 1.5 1.5 1.5 1.5 1.5 Water Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample 1.5 1.5 1.5 1.5 1.5 1.5 <td>2</td> <td></td> <td>19.6</td> <td>10,0</td> <td></td> <td>98.9</td> <td></td> <td></td>	2		19.6	10,0		98.9		
S HA q, q $q7.6$ $q7.6$ 6 HA q, q $q7.6$ $q7.6$ $q7.6$ 7 HA q, q $q7.5$ X (V: (5) 7 HA q, q $q7.5$ X (V: (5) 7 HA q, q $q7.5$ X (V: (5) 7 $Gample$ $Gample$ $Gample$ $Gample$ (°F) (millulemens/centimeter) Dissolved Solids (TDS)(ppm) Salinity (ppt) Resistivity (g/kg) 1 $Gample$ $Gample$ $Gample$ $Gample$ 3 $Gample$ $Gample$ $Gample$ $Gample$	4		14.5	9.8		9107		
6 19.4 9.9 97.5 X N: (S 7 7 7 7 7 X N: (S Depth Sample ('F) pH Conductivity (ms/cm) Dissolved Solids (g/kg) or (g/kg) Resistivity (\Omega cm) Surface 1 1 1 1 1 1 1 2 1 <td< td=""><td>5</td><td></td><td>19.4</td><td>9.9</td><td></td><td>97.6</td><td></td><td></td></td<>	5		19.4	9.9		97.6		
7 PH Conductivity (ms/cm) (millistemens/centimeter) Total Dissolved Solids (TDS)(ppm) Salinity (ppt) or (g/kg) Resistivity (\Omega cm) surface Image: Solids (TDS)(ppm) Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) 1 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 3 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 4 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 3 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 4 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 5 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids or (g/kg) 4 Image: Solids (TDS)(ppm) Image: Solids or (g/kg) Image: Solids or (g/kg) Image: Solids (G) (G) (G) (G) (G) (G) (G) (G) (G) (G)	6		14.4	9.9		97,5	X II: 1	5
Depth Temperature pH Conductivity (ms/cm) Total Dissolved Solids Salinity (ppt) or (g/kg) Resistivity (Ω cm) urface 1 0	/							
Surface 1 2 3 4 5 6 7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: $10:50$ / $11:25$ Air temperature: B_{1} "F Bottom Depth: 1_{10} m Secchi (Scope): 7 ther (overcast, sunny, calm, windy): aloud, $drizzk$ Wind Speed 3mph- tion team: $Te \in f$ from $hrpin$	Depth Meters)	Temperati Sample (°F)	ure pH	Conductivity (ms/cm) (millisiemens/centimeter)	Total Dissolve Solids (TDS)(pp	Salinity (p ed or (g/kg) m)	pt) Resistivity (Ω cm)	
1 2 3 4 5 6 7 7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: 10:50 $I f I : 25$ Air temperature: E9 "F Bottom Depth: $T_1 O m$ Secchi (Scope): T ther (overcast, sunny, calm, windy): cloudy, drizzk Wind Speed 3mph. tion team: $Te \in F S$ From Arpin	Surface							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1							
3 4 5 6 6 7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: $10:50$ $11/125$ Air temperature: F Bottom Depth: $7_1 Om$ Secchi (Scope): 7 7 7 ther (overcast, sunny, calm, windy): $cloudy$ $dri RR$ $Terf S$ $Frein$ $Arpin$ tion team: $Terf S$ $Frein$ $Terf S$ $Frein$ $Arpin$	2	te a plante		and the second s				-
4 5 5 6 7 7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: 10:50 / 1/125 Air temperature: B_1^2 "F Bottom Depth: $\underline{7}_1 O_m$ Secchi (Scope): $\underline{7}$ ther (overcast, sunny, calm, windy): \underline{cloudy} , $\underline{drizike}$ Wind Speed 3mph. tion team: \underline{Terris} from $Arrpin$	3							
6 7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: $10:50$ $1/1:25$ Air temperature: 69 "F Bottom Depth: $7,0$ m Secchi (Scope): /ther (overcast, sunny, calm, windy): $cloudy$ $drizzle$ Wind Speed 3mph. tion team: $Teff$ $Frein$ $Arpin$	5							-
7 Nater Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: 10:50 111:25 Air temperature: B_1^{-1} *F Bottom Depth: $\underline{7}_1 \odot m$ Seechi (Scope): $\underline{7}_1$ ther (overcast, sunny, calm, windy): cloudy drizzle Wind Speed 3mph. thon team: $\underline{7} \in f : 5$ free Ar pin	6							
Water Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: 10:50 / 1/:25 Air temperature: B_{1}^{0} *F Bottom Depth: $\underline{7}_{10}$ m Secchi (Scope): $\underline{7}_{10}$ ther (overcast, sunny, calm, windy): \underline{cloud}_{10} , \underline{dr}_{12} ? Wind Speed 3 mph tion team: \underline{Jeff}_{10} , \underline{fr}_{20} , \underline{dr}_{12} ; \underline{dr}_{10} wind Speed 3 mph	7							
Water Sampling Depths (Label each bottle with Lake, Date, Time, Depth, Collector, Location, Deepwater sample /End Time: 10:50 / 1/:25 Air temperature: $\underline{B9}$ "F Bottom Depth: $\underline{7}$, $\underline{0}$ m Secchi (Scope): $\underline{7}$ ther (overcast, sunny, calm, windy): $\underline{cloud}_{\mathcal{A}}$, \underline{dr} ; $\underline{7}$ the Wind Speed 3 mph tion team: $\underline{Je} \in f$ from $\underline{1}$ or \underline{p} in $\underline{Te} = f$ from $\underline{1}$ or \underline{p} in								
nents: Dacch, & bottom No Intermochine	Water Sal t/End Tim ther (over ction teal ments:	mpling Dep ne: <u>10:50</u> rcast, sunn m: <u>Je</u> Sacch,	with (Label each the second s	cloudy. drie n Arpin No Th	a, Time, De F Bot حکار	pth, Collector, La tom Depth:_ <u>7</u> ,	ocation, Deepwar <u> M</u> m Secchi (So Wind Speed	ter sample cope): 3mph
			1 122.01					

Secchi Disk Transparency

Fr. Angelo Secchi 1865

Secchi Disk Transparency

- Generally a 20 cm black and white disk.
- Secchi disk devised in 1865 by Fr. Secchi
- Estimates transparency
- Centimeters to 40m
- 10% of surface light

Secchi Disk Transparency

- Generally a 20 cm black and white disk.
- Secchi disk devised in 1865 by Fr. Secchi
- Estimates
 transparency
- Centimeters to 40m
- 10% of surface light

Chlorophyll-a

- Photosynthetic pigment common to all algae
- Used to characterize trophic level, as is Secchi transparency
- Should be a good correlation with Secchi transparency

2020

Thermal Structure

- Temperature/density gradients in water column create resistance to mixing among different strata
- Plane of greatest resistance to mixing is the thermocline
- Prevents diffusion of oxygen to lower depths

What happens at the bottom when oxygen is depleted?

Kortmann, R. 2015. Cyanobacteria in Reservoirs: Causes, Consequences, Controls. NEW ENGLAND WATER WORKS ASSOCIATION. 129(2):73-90

Figure No. 5 Important Biological Processes in Source Water Reservoirs.

Phosphorus – The "Limiting" Nutrient

Water column depth: Epilimnion = top; Metalimnion = middle (near thermocline); Hypolimnion = bottom. Hypolimnetic total phosphorus increases after protracted period of anoxia at near bottom

Nitrogen in the Hypolimnion

Nitrogen in the hypolimnion (at the bottom). The ammonia constituent of the total amount of nitrogen Increases after protracted period of anoxic conditions at the bottom.

Algal Community

Figure 12. Micrographs of algae specimens taken from Amston Lake samples in 2020. A. The Golden Algae *Dinobryon spp.*; B. the Diatom Tabellaria spp.; C. the Dinoflagellate Ceratium *spp.*; the Green Algae D. Gloeocystis spp., E. Coelastrum spp., and F. *Staurastrum spp.*; the Cyanobacteria G. Dolichospermum spp., H. Microcystis spp., and I. Aphanocapsa spp.

Algal Community

Figure 11. A – algal cell concentrations by taxa and date; B – relative abundances of cells by taxonomic group and date; C – algal biovolume by taxonomic group and date; and D – percent biomass by taxonomic group and date. Cyanobacteria = Cyano, Green = Green Algae or Chlorophyta, Gold = Golden Algae or Chrysophyta, Dia = Diatom or Bacillariophyta, Dino = Dinoflagellate or Pyrrhophyta, Crypto = Cryptophyta

Trends in Lake and Stormwater Water Quality

- Multiple Linear Regression
 - Assessed significant change, if any, based on combinations of variables since 1994
 - For the lake, applied to variables in epilimnion, hypolimnion, and combination of both
 - For stormwater, applied to variables grouped by municipality (Hebron and Lebanon) and collectively

Trends in Lake and Stormwater Water Quality

• Multiple Linear Regression

- Assessed significant change, if any, based on combinations of variables since 1994
- For the lake, applied to variables in epilimnion, hypolimnion, and combination of both
- For stormwater, applied to variables grouped by municipality (Hebron and Lebanon) and collectively

Table 5. Variables used in Multiple Linear Regression and ANOVA. Spec. Cond. = specific conductance; Total Phos. = total phosphorus

Variable	Lake	Stormwater
Alkalinity	\checkmark	
Ammonia		
Nitrate		\checkmark
рH		
Spec. Cond.	\checkmark	\checkmark
TKN	\checkmark	
Total Phos.*	\checkmark	\checkmark
Turbidity		\checkmark

*Total phosphorus was removed from the lake epilimnetic dataset due to lack of variance

Are the Systems Significantly Changing?

- There has been significant change in the water quality of Amston Lake since 1994.
- Was based on the combined dataset, i.e. no significant change based on epi or hypo datasets.
- Variables contributing the most were alkalinity, and to a lesser extent, total phosphorus and specific conductance.

- There has been significant change in the chemistry of stormwater entering Amston Lake since 2001.
- Was based on the combined Hebron and Lebanon dataset, and on the Hebron and Lebanon sites data utilized independently.
- The most important variable contributing to the significance of the combined data and the Hebron data models was total phosphorus.
- For the Lebanon stormwater sites, the most important variables were nitrate and specific conductance.

Lake water quality variables significantly changing based on ANOVA

Stormwater Quality Variables Significantly Changing based on ANOVA

Figure 20. Linear regressions of nitrate over time from the combined Hebron and Lebanon dataset, and specific conductance over time from the Lebanon dataset.

Amston Aquatic Plant Community

- Inventory all species of the plant community.
- Determine the presence of nonnative aquatic macrophytes.
- Determine the presence of rare or endangered macrophyte species.
- Evaluate the impact of all macrophyte species on recreational access.
- Statistically model the likelihood of encountering any macrophyte species as depth increases.

Amston Aquatic Plant Community

- Examine the relationships among macrophyte richness, macrophyte diversity, depth, and other macrophyte species.
- Identify species that dominate the community or negatively impact recreational access.
- Create spatial distribution graphics associated with dominant species and/or problematic species.
- Identify data gaps and provide guidance on ecosystem monitoring.

Amston Aquatic Plant Community

Species Name	Common Name	Point Encounters	Percent of Points with Plants	Total Rank Abundance	Average Lake Rank Abundance	Average Abundance Where Present
Brasenia schreberii	Watershield	20	7.25	55	0.18	2.75
Ceratophyllum demersum	Coontail	8	2.90	12	0.04	1.50
Chara spp.	Musk Grass	28	10.14	39	0.12	1.39
Eleocharis acicularis	Dwarf Hair Grass	7	2.54	13	0.04	1.86
Eriocaulon aquaticum	Common Pipewort	7	2.54	12	0.04	1.71
Elodea canadensis	American Waterweed	9	3.26	13	0.04	1.44
Elatine minima	Small Waterwort	4	1.45	5	0.02	1.25
Elodea nuttallii	Western Waterweed	18	6.52	29	0.09	1.61
Lemna minor	Common Duckweed	1	0.36	3	0.01	3.00
Myriophyllum humile	Low Watermilfoil	1	0.36	2	0.01	2.00
Myriophyllum tenellum	Slender Watermilfoil	9	3.26	21	0.07	2.33
Najas flexilis	Nodding Waternymph	49	17.75	97	O.31	1.98
Nuphar variegata	Yellow Pondlily	4	1.45	8	0.03	2.00
Nymphaea odorata	White Waterlily	20	7.25	48	0.15	2.40
Pontederia cordata	Pickerelweed	11	3.99	16	0.05	1.45
Potamogeton amplifolius	Large Leaf Pondweed	128	46.38	226	0.72	1.77
Potamogeton bicupulatus	Snailseed Pondweed	1	0.36	2	0.01	2.00
Potamogeton epihydrus	Ribbonleaf Pondweed	6	2.17	10	0.03	1.67
Potamogeton illinoiensis	Illinois Pondweed	2	0.72	2	0.01	1.00

Amston Aquatic Plant Community

Species Name	Common Name	Point Encounters	Percent of Points with Plants	Total Rank Abundance	Average Lake Rank Abundance	Average Abundance Where Present
Potamogeton natans	Floating Pondweed	12	4.35	25	0.08	2.08
Potamogeton pusillus	Small Pondweed	8	2.90	14	0.04	1.75
Potamogeton robbinsii	Robbins Pondweed	240	86.96	602	1.92	2.51
Potamogeton spirilus	Spiral Pondweed	1	0.36	1	0.00	1.00
Potamogeton zosteriformes	Flatstemmed Pondweed	1	0.36	1	0.00	1.00
Sagittaria graminea	Grassy Arrowhead	4	1.45	6	0.02	1.50
Typha lattifolia	Cattail	1	0.36	2	0.01	2.00
Utricularia macrorrhyza	Common Bladderwort	1	0.36	2	0.01	2.00
Utricularia gibba	Humped Bladderwort	3	1.09	4	0.01	1.33
Utricularia purpurea	Purple Bladderwort	5	1.81	11	0.04	2.20
Utricularia radiata	Floating Bladderwort	3	1.09	4	0.01	1.33
Vallisneria americana	Tape Grass	105	38.04	238	0.76	2.27
Wolffia sp.	Watermeal	1	0.36	3	0.01	3.00

Summary Results

- Amston Lake on July 18, 2020
- Aquatic macrophytes were found at 276 of the 314 grid points
- Suggests that 88% of the waterbody houses one or more plant species.
- In total,
 - 25 submerged/rooted aquatic macrophytes,
 - 3 lily-pad species
 - 2 unrooted floating species
 - 1 macroalgae

- The most common species detected during this survey was *Potamogeton robbinsii* (Robbin's Pondweed)
- The second most common species found was the rooted macrophyte *Vallisneria americana* (Tape Grass)
- The third most common species detected in Amston Lake was *Potamogeton amplifolius* (Large-leaf Pondweed)
- The fourth most common species was *Najas flexilis* (Nodding Waternymph)

Potamogeton robbinsii

Vallisneria americana

Potamogeton amplifolius

Najas flexilis

Discussion

- Amston Lake's plant community exhibits moderate productivity and is moderately diverse
- The plant community was not found to house any non-native or rare/endangered species
- There were no signs that aquatic macrophytes were impinging upon recreational access in most sections of the lake
- Amston Lake contains a total richness that is greater than the regional average of 13 species, is a community that has resisted invasion from non-native species, and has high average diversity
- The plant community is healthy and ecologically functional

Management Approach

- Amston Lake houses a diverse and rich plant community that has resisted invasion by non-native species
- Any major disturbance to that community could have adverse impacts over the long term
- We would only recommend localized, subtle mechanical management

 For Property Adjacent Swim Areas, Docking Areas, and Resident Beaches we prescribe methods considered less obtrusive and consistent with the regulations of the Amston Lake Ordinances

Lake Bathymetry Project

- Approximately 194 acres
- Maximum depth of just less than 8 meters (7.9 m)
- Mean depth of 2.7 meters
- Contains approximately 2.1x10⁶ cubic meters of water

Thank you. Questions?